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| ecture Overview

* Discuss Syllabus
* (Course Overview
* [ntroduction to Dynamical Systems




Course Information

* Time
— 9:00-noon Fridays (Lectureq1 + Lecture2 + Exercise]

* |nstructor
— Prof. Selman Sakar

e Emall

— selman.sakar@epfl.ch

Teaching Assistants (+8 student assistants]
— Houman Javaheri: houman.javaheri@epfl.ch
— MATLAB Assignments: Lorenzo Noseda: lorenzo.noseda@epfl.ch




Course Material

* Polycopie is on Moodle
— Solved exercises
* Relevant External Resources

— System Dynamics, Katsuhiko Ogata
— System Dynamics, William Palm

* (Course Webpage
— https:/ /moodle.epfl.ch/course /view.php?id=13902

— Problem Sets and Solutions

— MATLAB assignments and tutorials
— Lecture notes

— Exams from previous years



https://moodle.epfl.ch/course/view.php?id=13902

Grading

 \Written Final Exam

* Emphasis on understanding major concepts
— I.e. no need for calculator, memorization of formulas

* MATLAB Assignments (total of 3]
— Pass (1 point), fail (O point), and distinction (1.5 point])
— Do not copy-paste reports
— 3 or 3.5 points: 0.25 added to your final grade
— 4 or 4.5 points: 0.5 added to your final grade




Class GGoals

* Combine previous knowledge (differential equations, classical mechanics,
matrix algebra]) with new mathematical tools (i.e. Laplace transform, Bode
plots) for the design and analysis of dynamical systems

* A systems level understanding of dynamic performance

* Preparation for more advanced courses such as Control Systems,
System Identification, Vibrations, Robotics




Contents

Mathematical Modeling of Dynamical Systems
— Mechanical, electrical, and electromechanical
— Analogous systems

» State-space Representation of LTI Systems (Linear Algebra)

* Linearization for Nonlinear Systems [Jacobian])

* Laplace Transform and Transfer Function

* Transient Response (time domain analysis, poles and zeros)

* Frequency Response (frequency domain analysis, Bode plot, Nyquist)




System

INPUT P SYSTEM » OUTPUT

* A combination of components acting together to perform a specific objective

* Dynamics: The evolution of the system over time

* Physical Systems: Machines, electronic circuits
* Non-physical Systems: Financial, software, social network

* (Cyber-physical Systems: Autonomous systems, robots




Block Diagram Representation

INPUT P SYSTEM » OUTPUT

* Representation of a system in terms of discrete blocks that represent part
of a system

* Arrows indicate flow of signals

* The box may include a set of differential equations that relate input to output
or a Transfer Function (will come later when we learn Laplace Transform]




Mathematical Representation of a Dynamical System

INPUT

u(?)

*

MODEL
x(t), 6

M,

-» OUTPUT

» States of a System: Internal variables that change in time
* Model of a System: States (x(z7)) and Parameters (6)

* Mathematical representation of a system using differential equations

* Mono-variable: Single input and single output
* Multivariable: Multiple inputs and/ or outputs
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Example

Input Flow rate [m23/s]

e {>Q< *

h(t)

 Variables and Parameters
* Input, output, and states

» Differential equations

Output Flow rate [m3/s]
qs(1)

A

outlet

L
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Modeling Approach

PROCESS

@ Abstraction

SYSTEM

! ! Simplification

MATHEMATICAL MODEL
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Modeling Approach

* A mathematical representation that is general enough to include all
necessary physical entities

* Find basic constituent elements, study them in detail, and understand the
iInteraction among them

* The choice of states is not unique

* Analogous mathematical representations of different systems

C
II ~~ ¥ |nertia &Inductance
k + Spring <> Capacitance
u 1() Friction € Resistance

m
F I
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Case Study: The trajectory of a car

PROCESS
Abstraction
v
SYSTEM PERTURBATIONS:
Wind, snow, slope
INPUT: OUTPUT:
Gas, brake, » SYSTEM » Position,
steering wheel velocity, |
acceleration
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Case Study: The trajectory of a car

PROCESS

Abstraction

SYSTEM

* States:
* Engine: Valves, pistons, camshaft
* Brake hydraulics: pressure, force
e Steering mechanismes: transmission, motor speed, torque
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Case Study: The trajectory of a car

SYSTEM

Simplification

N4
MODEL PERTURBATIONS:
Independent variables
INPUT: MATH OUTPUT:
Independent > > Dependent
variables MODEL variables
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Perturbations

* The influence of the environment

* Undesirable, unknown, non-adjustable

* May be deterministic or stochastic in nature
* Often neglected for simplification

* (Concept of robustness and resilience

* Active control for stabilization

17



Business Dynamics: Stock-flow Diagrams

BUSINESS
- DYNAMICS

Systems

Thinking and

INFLOW

-» STOCK

OUTFLOW

‘b

delivery

delay (\diliveries
/ B

orders
to factory

\_0 discrepancy

response

elay

inventoryof |
cars on the lot [

AN

desired

" inventory

Modeling for ja

Introduction to System Dynamics
https://www.youtube.com/watch?v=AnTwZVviXyY

customer
demand

perceived sales

perception
delay
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Domains of Application

Simulati SPECIFIED UNKNOWN
Imulation > MODEL >
Construction SPECIFIED DESIRED
»| DESIGN >
|dentification SPECIFIED MEASURED
»| UNKNOWN —
Control UNKNOWN DESIRED
»| MODEL P
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Static and Dynamical Systems

» Static System: All states and parameters are constant. The output only
depends on the input. y(t) = flu(t)]

* The state of dynamical systems varies over time and obeys differential
equations that involve time derivatives (or difference equations if the
system is discrete])

* A prediction about the system'’s future behavior requires

— An analytical solution of differential equations
— Numerical integration over time through computer simulation

system wo(t), 0,(t)
/ states

Ui (©), 0,(t) /v' 0, 0.t
® .00

20



Continuous and Discrete-Time Systems

A A

T T~ .

-

* Discrete-time systems: Countable number of states [sampling time]
* Computer programs, financial models

* Difference equations

v(k+1) = f(x(k),uk)) keZ




Linear and Nonlinear Systems

* A system is consider linear if it obeys superposition principle, which is
defined by additivity and homogeneity properties.

Additivity:  f(x+y) = f(x)+ f(V)
Homogeneity:  f(ox) = of(x) for scalar o

For all linear systems, the net response caused by two or more inputs is the
sum of the responses that would have been caused by each input individually

A system defined as y(f) = h|u(t)] is considered linear if

hlow (1) + Bu(t)] = ahlu ()] + Bhlu,()] = ay (1) + By,(1)
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Linear and Nonlinear Systems: Additivity

u(t)

»  SYSTEM

yi(t)

yi(t) + yat)

+ P

us(t)

»  SYSTEM

YY)

u'(t) = u (1) + uxy)

>

Y'(t) =yi(t) + yi(t)
>

SYSTEM
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Linear and Nonlinear Systems: Homogeneity

u(t) () ky(t)
»| SYSTEM >@ >

ku(t) Y =ky®
» SYSTEM >

Note: k 1s a scalar
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Rule of thumbs

System linearity is independent of scaling in time
— y(t) = u(sin(t))
— y(t) = u(t?)

Non-linear input terms will obviously make the system nonlinear
— y(t) = u*(t)

System linearity is independent of the coefficients (can be time-varying]
— y(t) = sin(t) u(t)

System linearity depends on terms that do not depend on the input or
output

— y(t) =2t + u(t)
— y(t) =2 +u(t)
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Time Invariance

* A system is time-invariant if its parameters do not change in time.
* The physical properties of the system remain constant (i.e. mass, geometry]

* For the same process, one can choose to generate a time-invariant or time-
variant model. For example, rocket and fuel tank.

* Mass as a parameter of the system that varies
with time: time-variant system

* Mass as a state variable of the system and the
rest of the model parameters are constant:
time-invariant system
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Time Invariance

/V: (t), 0:(t)

O

Wa(t), O5(t)

states
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Time Invariance

* From a different perspective, the system does not age and the input does

not change the foundation of the system

* Mathematically speaking, if input u(¢) generates y(¢) then the output of the

system in response to the shifted input u(#-,) is y(t-t,).

u(t)

u(t-t,)

g

SYSTEM

()

>

SYSTEM

Delay by t,

W(t-tp)
>

y'(t) = y(t-tp)
>
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Graphical Representation

INPUT OUTPUT
t : t
OUTPUT
INPUT / Time-invariant

t+t0

/ \/ Time variant

t+t0

4

t+t0
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Rule of thumbs

* Time-invariance depends on scaling in time
* y(t) = u(sin(t))
© y(®)=u)

* Non-linear input terms do not affect time-invariance
© YO =uX(D)

* Time-invariance depends on coefficients that depend on time
*y(t) =sin(t) u(t)

* Time-invariance depends on additional terms IF they are functions of time
e y(t)=2t+ u(t)
* y(®)=2+u()
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Causality

* Output depends only on past and present, but not future inputs
* An effect cannot occur before its cause

Cause Cause
(3/-1 time (\0/—\» time
Causal Non causal

* Majority of physical systems are considered causal

e y(t) = u(t+1)is non-causal
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Graphical Representation

INPUT QUTPUT
=
QUTPUT
INPUT Causal System

e

-
/\ Non-causal System
-
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Distributed Parameters

* Dynamical systems with localized parameters is described by time-
dependent ordinary differential equations.

* Dynamical systems with distributed parameters are described by partial
differential equations that depend both on space and time.

* Finite Element Modeling

\ \
6 { 91
Xy 0,
6 = 0(1) 6 = 0(x,1)
Rigid beam with Flexible beam with

point mass distributed mass
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Stochastic Systems

One or more parts of the system has randomness associated with it
— Random time delays, noisy disturbances, unpredictability of parameters

The same set of parameter values and initial conditions will lead to an
ensemble of different output values (mean, standard deviation etc.).

Statistical mechanics, qguantum mechanics, economy and finance
[forecast).
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summary

* In this course we will primarily work with continuous-time, linear, time-
invariant dynamical [LTI]) systems.

INPUT > LTI MODEL = OUTPUT

u(t) x(), 0 »(t)

* These systems can be represented by ordinary differential equations with
constant coefficients.

* Nonlinear systems will be linearized
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