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Lecture Overview

• Discuss Syllabus

• Course Overview

• Introduction to Dynamical Systems
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Course Information

• Time 
– 9:00-noon Fridays (Lecture1 + Lecture2 + Exercise)

• Instructor
– Prof. Selman Sakar

• Email
– selman.sakar@epfl.ch

• Teaching Assistants (+8 student assistants)
– Houman Javaheri: houman.javaheri@epfl.ch

– MATLAB Assignments: Lorenzo Noseda: lorenzo.noseda@epfl.ch
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Course Material

• Polycopié is on Moodle
– Solved exercises

• Relevant External Resources
– System Dynamics, Katsuhiko Ogata

– System Dynamics, William Palm

• Course Webpage
– https://moodle.epfl.ch/course/view.php?id=13902

– Problem Sets and Solutions 

– MATLAB assignments and tutorials
– Lecture notes

– Exams from previous years
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Grading

• Written Final Exam

• Emphasis on understanding major concepts 
– i.e. no need for calculator, memorization of formulas

• MATLAB Assignments (total of 3)
– Pass (1 point), fail (0 point), and distinction (1.5 point)

– Do not copy-paste reports 

– 3 or 3.5 points: 0.25 added to your final grade

– 4 or 4.5 points: 0.5 added to your final grade
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Class Goals

• Combine previous knowledge (differential equations, classical mechanics, 
matrix algebra) with new mathematical tools (i.e. Laplace transform, Bode 
plots) for the design and analysis of dynamical systems

• A systems level understanding of dynamic performance

• Preparation for more advanced courses such as Control Systems, 
System Identification, Vibrations, Robotics
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Contents

• Mathematical Modeling of Dynamical Systems
– Mechanical, electrical, and electromechanical

– Analogous systems

• State-space Representation of LTI Systems (Linear Algebra)

• Linearization for Nonlinear Systems (Jacobian)

• Laplace Transform and Transfer Function

• Transient Response (time domain analysis, poles and zeros)

• Frequency Response (frequency domain analysis, Bode plot, Nyquist)
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System
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• A combination of components acting together to perform a specific objective

• Dynamics: The evolution of the system over time

• Physical Systems: Machines, electronic circuits

• Non-physical Systems: Financial, software, social network

• Cyber-physical Systems: Autonomous systems, robots

SYSTEMINPUT OUTPUT



Block Diagram Representation
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• Representation of a system in terms of discrete blocks that represent part 
of a system

• Arrows indicate flow of signals

• The box may include a set of differential equations that relate input to output 
or a Transfer Function (will come later when we learn Laplace Transform)

SYSTEMINPUT OUTPUT



Mathematical Representation of a Dynamical System
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MODEL
x(t), q

INPUT OUTPUT
u(t) y(t)

• States of a System: Internal variables that change in time
• Model of a System: States (x(t)) and Parameters (q)

• Mathematical representation of a system using differential equations

• Mono-variable: Single input and single output
• Multivariable: Multiple inputs and/or outputs



Example
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• Variables and Parameters

• Input, output, and states

• Differential equations

Input Flow rate [m3/s]

Output Flow rate [m3/s]

outlet



Modeling Approach
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Abstraction

PROCESS

SYSTEM

MATHEMATICAL MODEL

Simplification



Modeling Approach
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• A mathematical representation that is general enough to include all 
necessary physical entities

• Find basic constituent elements, study them in detail, and understand the 
interaction among them

• The choice of states is not unique

• Analogous mathematical representations of different systems

Iner%a ↔Inductance
Spring ↔ Capacitance
Fric%on ↔ Resistance



Case Study: The trajectory of a car
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SYSTEM
INPUT:
Gas, brake, 
steering wheel

OUTPUT:
Position, 
velocity, 
acceleration

PERTURBATIONS:
Wind, snow, slope

PROCESS

SYSTEM

Abstraction



Case Study: The trajectory of a car
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PROCESS

SYSTEM

Abstraction

• States: 
• Engine: Valves, pistons, camshaft
• Brake hydraulics: pressure, force 
• Steering mechanisms: transmission, motor speed, torque



Case Study: The trajectory of a car
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MATH
MODEL

INPUT:
Independent 
variables

OUTPUT:
Dependent 
variables

PERTURBATIONS:
Independent variables

SYSTEM

MODEL

Simplification



Perturbations
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• The influence of the environment

• Undesirable, unknown, non-adjustable

• May be deterministic or stochastic in nature

• Often neglected for simplification

• Concept of robustness and resilience 

• Active control for stabilization



Business Dynamics: Stock-flow Diagrams
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STOCK
INFLOW OUTFLOW

Introduction to System Dynamics
https://www.youtube.com/watch?v=AnTwZVviXyY



Domains of Application
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MODEL
UNKNOWNSPECIFIED

DESIREDSPECIFIED

UNKNOWN
MEASUREDSPECIFIED

MODEL
DESIREDUNKNOWN

Simulation

Construction

Identification

Control

DESIGN



Static and Dynamical Systems
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• Static System: All states and parameters are constant. The output only 
depends on the input.

• The state of dynamical systems varies over time and obeys differential 
equations that involve time derivatives (or difference equations if the 
system is discrete)

• A prediction about the system’s future behavior requires 
– An analytical solution of differential equations

– Numerical integration over time through computer simulation

v1(t), q1(t) v1(t), q1(t) 

w2(t), q2(t) system

states



Continuous and Discrete-Time Systems

• Discrete-time systems: Countable number of states (sampling time)

• Computer programs, financial models

• Difference equations
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Linear and Nonlinear Systems
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• A system is consider linear if it obeys superposition principle, which is 
defined by additivity and homogeneity properties.

Additivity:

Homogeneity: for scalar

For all linear systems, the net response caused by two or more inputs is the 
sum of the responses that would have been caused by each input individually

A system defined as is considered linear if



Linear and Nonlinear Systems: Additivity
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SYSTEM
u1(t) y1(t)

SYSTEM

SYSTEM

u2(t) y2(t)

u’(t) = u1(t) + u2(t)

y1(t) + y2(t)

y’(t) = y1(t) + y2(t)



Linear and Nonlinear Systems: Homogeneity
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SYSTEM
u(t) y(t)

SYSTEM
k u(t)

k y(t)

y’(t) = k y(t)

k

Note: k is a scalar



Rule of thumbs
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• System linearity is independent of scaling in time 
– y(t) = u(sin(t))
– y(t) = u(t2)

• Non-linear input terms will obviously make the system nonlinear
– y(t) = u2(t) 

• System linearity is independent of the coefficients (can be time-varying)
– y(t) = sin(t) u(t)

• System linearity depends on terms that do not depend on the input or 
output
– y(t) = 2t + u(t)
– y(t) = 2 + u(t)



Time Invariance
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• A system is time-invariant if its parameters do not change in time.

• The physical properties of the system remain constant (i.e. mass, geometry)

• For the same process, one can choose to generate a time-invariant or time-
variant model. For example, rocket and fuel tank.

• Mass as a parameter of the system that varies 
with time: time-variant system

• Mass as a state variable of the system and the 
rest of the model parameters are constant: 
time-invariant system



Time Invariance
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v1(t), q1(t) 

w2(t), q2(t) 
states



Time Invariance
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• From a different perspective, the system does not age and the input does 
not change the foundation of the system

• Mathematically speaking, if input u(t) generates y(t) then the output of the 
system in response to the shifted input u(t-t0) is y(t-t0).  

SYSTEM
u(t) y(t)

SYSTEM
u(t-t0)

y(t-t0)

y’(t) = y(t-t0)

Delay by t0



Graphical Representation
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INPUT OUTPUT

INPUT

OUTPUT

Time-invariant

Time variantt+t0

t t

t+t0

t+t0



Rule of thumbs
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• Time-invariance depends on scaling in time

• y(t) = u(sin(t))
• y(t) = u(t2)

• Non-linear input terms do not affect time-invariance

• y(t) = u2(t) 

• Time-invariance depends on coefficients that depend on time 

• y(t) = sin(t) u(t)

• Time-invariance depends on additional terms IF they are functions of time
• y(t) = 2t + u(t)
• y(t) = 2 + u(t)



Causality
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• Output depends only on past and present, but not future inputs

• An effect cannot occur before its cause

• Majority of physical systems are considered causal

• y(t) = u(t+1) is non-causal

time time



Graphical Representation

32

T

T

T

INPUT OUTPUT

INPUT

OUTPUT

T

Causal System

Non-causal System



Distributed Parameters

• Dynamical systems with localized parameters is described by time-
dependent ordinary differential equations.

• Dynamical systems with distributed parameters are described by partial 
differential equations that depend both on space and time. 

• Finite Element Modeling 
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Flexible beam with 
distributed mass

Rigid beam with 
point mass



Stochastic Systems

• One or more parts of the system has randomness associated with it
– Random time delays, noisy disturbances, unpredictability of parameters

• The same set of parameter values and initial conditions will lead to an 
ensemble of different output values (mean, standard deviation etc.).

• Statistical mechanics, quantum mechanics, economy and finance 
(forecast). 

34



Summary

• In this course we will primarily work with continuous-time, linear, time-
invariant dynamical (LTI) systems.

• These systems can be represented by ordinary differential equations with 
constant coefficients.

• Nonlinear systems will be linearized

35

LTI MODEL
x(t), q

INPUT OUTPUT
u(t) y(t)


